PNH: stipulations about clonal tribulations

Jaroslaw Maciejewski MD, PHD, FACP

Translational Hematology/Oncology Department Taussig Cancer Center, Cleveland Clinic

Stubborn PNH but we know what we do not know

• Is evolution of PNH form of somatic gene rescue in the context of autoimmunity?

-GPI linked proteins could be the targets but PNH cells do contain proproteins and thus antigens should not be absent?

-Is antigen present in all cells but PNH cells have secondary immune privilege?

-Is PNH cell itself immunogenic but how it is spared (i.e. how to explain their expansion)?

- What are the triggers of the auto/immune attack in AA and PNH?
- Mechanisms of secondary immune privilege still unknown?
- What is the mechanistic difference between pPNH and post-AA sPNH?

-Same genetic predisposition <- different triggers

-Same triggers

-> different genetic predisposition

PNH as immune SGR?

CHIP

MDS

SRG via class I and II HLA mutations

- At least one HLA aberration was found at diagnosis in 42%, at followup in 34% and at the time of progression in 20% of patients.
 - PNH clones were present in almost half of the cases (N=29, 45%) with HLA abnormalities
 - Most mutated class I alleles were A*02:01 and B*14:02, while the most affected class II locus was DQB1
 - hotspot in exon 1 involving class I alleles (particularly B*14:02), (12.5% of all mutant cases) at a median VAF of 9.5% (range: 4.3-20%).
 - ✓ No recurrent mutations were identified in class II genes.

✓ Allelic losses more frequent in class II gens (DRB1 and DQB1)

Pagliuca et al. Leukemia 2022

Other somatic hits in presentation and processing

✓ N=53 AA pt WGS (vs 700 AML and >900 MDS)

- Genomic analysis of Immune genes involved in antigen presentation and processing machinery other than HLA
- ✓ 26% of the patients, median VAF 10% (lower than PIGA and myeloid drivers), significantly higher frequency than in AML or MDS (p<0.0001)</p>
- Most frequently mutated family of immune genes: proteasome machinery (*PSMC5*) and vesicle transportation (*KLC2*), potentially affecting HLA class I antigen assembly, together with class II HLA transcriptional regulators (i.e., *CIITA*)
- ✓ Somatic hits in immune genes not mutually exclusive with HLA mutations
- About 26% of patients presented at least one myeloid driver mutation in absence of any PIGA, HLA or immune^l Hit.

SRG via myeloid driver mutations

Clonal trajectories in PNH

Caveat:

Clone size in blood may not correspond to the actual disease burden

- PNH/mutant HPSC contribute more to blood production than normal = clone size in blood is underestimate
- Normal HPSC contribute to blood cells production while clonal cells are inhibited
 - = clone size in an overestimate

Clonal dynamics: clues to pathogenesis

Evolutions speed may help to identify underpinning of AA/PNH:

- 480 AA, AA/PNH 88 pPNH patients
- pts (F/U60 month = 1533 pty) '
- 233/480 PNH clone with 13% sPNH progression at median time of 39 mo.
- 13% progression (31 patients) at median time 39 months (risks: lack of ATG therapy, PIGA mosaicism, >5% PNH, failure to achieve CR)

Criterion: median time to reach an increase by 5,10, 20% in gran clone size: e.g. median time to 4 of 5% = 23 mo.

- 1) No PNH clone
- 2) Slow progressors >23 mo
- 3) Fast progressors <23 mo
- 4) pPNH 4 0 mo.

Molecular, pathophysiologic features by group?

sponse

ë

of immune

Strength

Alternate theory

SRG and immune theories of PNH

Strength of immune response

Alternate theory of PNH

How PNH cell could be a trigger?

- Analogous to the tumor surveillance reactions
- Altered presentation of antigenic peptides as trigger
- Unprocessed GPI anchored proteins generate neopeptides cross reactive with normal cells.
- Seems incompatible with selective advantage of PNH cells

PNH as trigger theory

Structure/specificity CDR3 analysis

TCR specificities in AA according to known TCR

TCR-HLA peptide characterization

Performance for anti-cancer TCRs

TAPIR: a T-cell receptor language model for predicting rare and novel targets

Authors: Ethan Fast¹, Manjima Dhar¹, Binbin Chen¹

TITAN: T-cell receptor specificity prediction with bimodal attention networks

Anna Weber^{1,2,*}, Jannis Born^{1,2} and María Rodriguez Martínez^{1,*}

Genetic predisposition theories

Inherited hyperreactivity traits (non Mendelian, low permissive genetic traits + rare inciting event(s)

- Inborn errors of immunity traits -> autoimmune pathologic compensatory response + rare inciting event
 - Classic IEI \rightarrow SCID \rightarrow Recessive \rightarrow Early onset \rightarrow Severe infections.
 - With the advent of NGS → An increasing number of adult-onset IEI has been identified.
 - Adult-onset vs. classic IEI:
 - Less-deleterious variants \rightarrow Dominant traits
 - Monoallelic variants \rightarrow Recessive diseases

+/- Environmental triggers

- · Incomplete penetrance.
- · Variable expressivity.
- Atypical or delayed manifestations.

Autoimmunity and immunodeficiency can coexist in a paradox fashion.

Autoimmunity

Immunodeficiency

IEI and BMF

- While investigating germline variants implicated in IEI in T-LGL → More frequent in cases with BMF.
- What if similar mechanism operates in AA PNH and AA/PNH.

Bravo-Perez et al. ASH23 Abstract#157

Clinical clues

- Patients with IEI → High frequency of BMF.
- Congenital BMF \rightarrow IUIS IEI Classification 2022.
- Genes of other IEI \rightarrow *PRF1* \rightarrow AA.
- Occasional reports describing AA as the leading manifestation of IEI.
- Complement factor H variants \rightarrow PNH.
- Systematic, BMF-forward approaches are needed
- While Investigating germline variants implicated in IEI in T-LGL → More frequent in cases with BMF.

Analytic pipeline for IEI

Recurrent genes

AIRE

- · Master regulator of self-tolerance.
- Biallelic mutations → Autoimmune polyendocrine syndrome type 1 (APS-1).

- 3 pts with heterozygous mutations.
- Monoallelic variants can cause an atypical APS-1, adult-onset, organspecific autoimmunity.
- PHD domains → AIRE complex.
- · Dominant negative effect.

Complement positive regulation variants in PNH

American Society of Hematology

- The heterogeneity of clinical presentation and clonal dynamic is likely due to the genetic background interaction with somatic gene rescue event of various nature with clonal remission possible.
- Germline variants predisposing to IEI are present in a significant fraction of cases with AA .
- The genetic defects found were mostly **heterozygous**, and associated with **dominant and adultonset traits explaining low penetrance likely in a very specific context**.
- Structural or functional analysis of IEI variants suggests that they may result in **aberrant/defective immune responses**, in which AA may eventually arise.
- **Different immune pathways are asymmetrically distributed**, according to disease phenotype:
- Genetic background may explain disease pathogenesis:
 - In AA predisposition to immune dysregulation,
 - In AA/PNH speed of progression
 - In PNH severity of clinical hemolytic presentation, extravascular hemolysis, thrombotic proclivity.

Many thanks to AA &MDS IF, NCI, NHLBI, DOD, LLS and Evans MDS foundation for funding support

Many thanks to patients who participate in research studies.

Our Laboratory, ASH 2024

Carmelo Gurnari Valeria Visconte, Simona Pagliuca, Carlo Bravo, Luka Guarnera

American Society of Hematology